PRODUCT SPECIFICATION # Valve Selection And Capacity Tables Valve Sizing for self-actuated temperature regulators is critical to control and life. Use Robertshaw's "FLO-RULE" valve sizing slide rule and valve C_V chart for accurate sizing, or contact our representative or the factory. The application requirement can frequently be satisfied by one or two sizes smaller valve than the supply pipeline size. The following tables give an approximation of the proper valve size for use with the cataloged self-actuated temperature regulators, in both two-way and three-way types on steam or water as indicated. For other fluids or other valve types, consult the "FLO-RULE" or our representative or factory. #### STEAM FLOW — HEATING SERVICE Table I lists the maximum steam flow at various supply pressures for the valves listed at their full-open position. TO USE TABLE 1: Follow the left-hand column down to the steam supply pressure. Read horizontally to the quantity (lbs. per hour of steam, or gallons per hour of water heated 100° F.) equal to or slightly higher than that required on the application. Read the proper valve size and type at the head of the column. TABLE I [Maximum Steam Flow With Critical Pressure Drop Across Two-way, Direct-acting Valves (Fully Open)]. See Note 1. | Valve Sty | Valve Style | | A | A | MA | MA | MA | MA | MA | FA‡ | FA‡ | FA‡ | | | |------------------------|---------------------------------|--------------------------|---|--------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|-------------------------------|--------------------------------|----------------------------------|----------------------------------|---|--| | ValveSize | Valve Size, In. | | 3/8
Port | 1/2 | 3/4 | 1 | 1-1/4 | 1-1/2 | 2 | 2-1/2 | 3 | 4 | Maximum Downstream Pressure for Critical Flow | | | Steam Pro
(PSI Gau) | | | Steam Flow, Lbs. per Hr.
(or Gallons of Water per Hour Raised in Temperature by 100° F.) | | | | | | | | | | | | | | 0
4
10 | 23
29
39 | 41
-52
69 | 56
72
95 | 250
320
420 | 330
420
550 | 475
610
800 | 665
850
1120 | 1220
1550
2040 | 2200
2800
3700 | 3400
4500
5700 | 6500
8500
11000 | 14" Hg Vac.
10" Hg Vac.
3" Hg Vac. | | | | 15
20
25
30 | 47
54
62
70 | 83
97
110
125 | 115
135
150
170 | 505
590
675
760 | 660
775
885
1000 | 960
1120
1290
1450 | 1340
1570
1800
2020 | 2460
2870
3280
3700 | 4500
5000
6000
6500 | 7000
8000
9200
10000 | 13000
15500
18000
20000 | 1.0 PSIG
4 PSIG
6 PSIG
10 PSIG | | | Dry, Saturated Steam | 40
50
60
70 | 86
100
120
135 | 150
180
210
235 | 210
250
290
325 | 935
1100
1270
1440 | 1220
1440
1660
1890 | 1770
2090
2420
2740 | 2480
2930
3380
3830 | 4520
5450
6170
7000 | 8000
9500
11000
12500 | 13000
15000
17500
20000 | 24000
29500
33000
39000 | 14 PSIG
20 PSIG
25 PSIG
30 PSIG | | | Dry, Satu | 80
90
100
125 | 150
165
180
220 | 265
290
320
390 | 365
400
440
535 | 1620
1790
1960
2380 | 2110
2330
2550
3110 | 3070
3390
3710
4520 | 4280
4740
5190
6320 | 7830
8650
9480
12000 | 14000
16000
18000 | 22000
24000
26000 | 42500
47000
50000 | 36 PSIG
40 PSIG
46 PSIG
59 PSIG | | | | 150
175
200
225
250 | | | | 2800
3340
3660
4100
4510 | 3670
4290
4780
5420
5900 | 5330
6270
6950
7920
8560 | 7450
8590
9710
10800
12000 | | | | | 73 PSIG
86 PSIG
99 PSIG
112 PSIG
125 PSIG | | ^{*} Steam flows are tabulated up to the maximum designed pressure drop of the valve. The maximum supply pressure should not exceed the published body rating. Certain self-actuated temperature regulators, when used with some of the valves listed, will not permit the maximum designed pressure drop. Check Table III for these limitations. [†] Maximum designed pressure drop on the "FA" valve with bronze trim is 50 psi; with stainless steel trim is 100 psi. NOTE 1 — Maximum steam flow through the valve is obtained when the downstream pressure is 53% of the absolute upstream supply pressure. This "critical pressure drop" situation is encountered on most steam heating applications, and is true wherever the downstream ("back") pressure is equal to or less than the figure in the last column of Table I. If downstream pressure is higher than that given on Table I, make correction as given in Table II. ### STEAM FLOW - HEATING SERVICE (Continued) ## HOW TO DETERMINE VALVE SIZE FROM GALLONS OF WATER HEATED/HR. WITH TEMPERATURE RISES OTHER THAN 100° F. Table I gives capacity in terms of Gal./Hr. water heated through 100° F. temperature rise. For other temperature rise figures, the following formula will give equivalent steamflow to use. Water Heated (GPH) × 8.33 (wt. of water per gal.) × Actual Temp. Rise (degrees) = Steam Quantity Required (lbs./hr.) Example: To heat 3000 GPH (equals 50 GPM) through a 120° F. rise (for example, 60° to 180° F.) where the steam supply pressure is 40 PSIG: $\frac{3000 \times 8.33 \times 120}{900}$ = 3,332 lbs./hr. steam required Referring to Table I, read down column 1 to 40 psig. Read horizontally to 4,520 lbs./hr. Head of columnshows that $2^{\prime\prime}$ MA is the proper selection. # TABLE II SUB-CRITICAL FLOW CORRECTION FACTORS To be applied only when downstream pressure is greater than the maximum value given in Table I. | PRESSURE RATIO Downstream Pres., PSIA* Upstream Press., PSIA | CORRECTION
FACTOR | | | | | |--|----------------------|--|--|--|--| | .53(or lower) | 1.000 | | | | | | .55 | 1.014 | | | | | | .60 | 1.058 | | | | | | .65 | 1.114 | | | | | | .70 | 1.186 | | | | | | .75 | 1.279 | | | | | | .80 | 1.412 | | | | | | .85 | 1.608 | | | | | | .90 | 1.942 | | | | | | .95 | 2.717 | | | | | | .99 | 6.006 | | | | | ^{*}PSIA — Absolute pressure: equals gage pressure plus 14.7 or sea level. If the downstream ("back") pressure at the valve exceeds the figure in the last column of Table I, it is necessary to apply the correction factor in Table II. Multiply the required steam flow in lbs./hr. by this factor. Using the corrected flow figure obtained, refer to Table I and determine valve size required. # TABLE III MAXIMUM RECOMMENDED PRESSURE DROP ACROSS VALVE For Self-actuated Temperature Regulators (With upperworks power a consideration) | R | Regulator No. | | | 1003 | 1004 | 1006 | 1007 | 1008 | 1009 | 1010* | 1011 | | |--------------|------------------------|-----------------------------------|---------------------------|--|---------------------------------|-------------------------|---------------------------------|-----------------------------|-----------------------------|----------------------|---------------------------------|--| | Т | Valve Type Size (Port) | | | Maximum Recommended Pressure Drop, PSI | | | | | | | | | | | A
A
A
FA | 1/4
3/8
1/2
3/4 | 125
115
65
160 | 125
125
125
125 | 125
125
125
125 | 125
125
90
125 | 125
125
110
125 | 125
125
125
125 | 125
125
125
125 | | 125
125
125
125
125 | | | 2-Way Valves | FA
FA
FA | 1
1-1/4
1-1/2
2 | 110
110
85
30 | 125
125
125
125
85 | 125
125
125
125 | 125
125
125
45 | 125
125
125
55 | 125
125
125
85 | 125
125
125
85 | | 125
125
125
85 | | | 2-Way | FA
FA
FA
MA | 2-1/2
3
4
3/4 | 25
20
15
250 | 65
55
40
250 | 110
90
70
250 | 250 | 45
35
25
250 | 65
55
40
250 | 65
55
40
250 | | 65
55
40
250 | | | | MA
MA
MA | 1
1-1/4
1-1/2
2 | 250
250
250
125 | 250
250
250
250
125 | 250
250
250
250
125 | 250 | 250
250
250
250
125 | 250
250
250
125 | 250
250
250
125 | | 250
250
250
250
125 | | | 3-Way Valves | WA
WA
WA
WA | 1/2
3/4
1
1-1/4
1-1/2 | 65
30
15
10
7 | 170
75
40
25
20 | 250
125
75
45
30 | 90
20
20
 | 110
50
30
20
10 | 170
75
40
25
20 | 170
75
40
25
20 | | 170

40
25
20 | | | 3-Wa | WD
WD
WD
WD | 2
2-1/2
3
4 | 40
40
 | 40
40
40 | 40
40
40
25 | 40
 | 40
40
 | 40
40
40 | 40
40
40 | 40
40
40
25 | 40
40
40 | | $NOTE: FA \ type\ valves, all \ sizes, with \ bronzetrim\ carry\ a\ maximum\ 50\ psi\ recommended\ pressure\ drop.$ $^{{\}bf *Regulator\,No.\,1010\,is\,available\,only\,with\,type\,WD\,valves.}$ ### WATER FLOW - COOLING OR HOT WATER SERVICE The quantity of water flow through a valve is principally dependent on the pressure drop across the valve. Table IV gives water capacities, in GPM, at various pressure drops for standard two-way valves for cooling or hot water service. Tables V and VI, on pages 4 and 5, show water capacities for three-way valves at various pressure drops for cooling bypass, blending or diverting service. For other two-way or three-way valves, see the Robertshaw "FLO-RULE" or contact our representative or the factory. TO USE TABLES IV, V and VI: Follows pressure drop column down to known or estimated pressure drop through valve (supply pressure minus any downstream back pressure). Read horizontally to a value equal to or slightly greater than the required flow. Read the proper valve size and type at the head of the column. TABLE IV MAXIMUM WATER FLOW (GPM) THROUGH REVERSE-ACTING, TWO—WAY VALVES (FULL OPENING) WITH STAINLESS STEEL OR MONEL TRIM | Cataloged
Valve Style | A | A | A | FA | ,FA | FA | FA | FA | FA | FA | FA | | | |---|---------------|---|------|-----|------|-------|-------|------|-------|------|------|--|--| | ValveSize,In. | 1/4
(Port) | 3/8
(Port) | 1/2 | 3/4 | 1 | 1-1/4 | 1-1/2 | 2 | 2-1/2 | 3 | 4 | | | | Pressure Drop*
across Valve
(PSI) | | Maximum Flow, GPM
with Water at 60° F. | | | | | | | | | | | | | 1 (a) | 0.8 | 2.44 | 3.2 | 9.3 | 17.6 | 22.5 | 30.4 | 59.3 | 82.5 | 130 | 226 | | | | 2 | 1.1 | 3.2 | 4.6 | 13 | 25 | - 32 | 43 | 84 | 118 | 188 | 320 | | | | 4
8 | 1.6 | 4.9 | 6.5 | 19 | 36 | 45 | 60 | 128 | 165 | 210 | 460 | | | | | 2.3 | 7.0 | 9.0 | 26 | 50 | 65 | 91 | 175 | 240 | 385 | 650 | | | | 10 | 2.6 | 7.7 | 10.0 | 30 | 55 | 70 | 98 | 185 | 260 | 420 | 720 | | | | 15 | 3.5 | 9.5 | 12.5 | 36 | 67 | 90 | 120 | 230 | 320 | 510 | 875 | | | | 20 | 4.6 | 11.0 | 14 | 42 | 80 | 100 | 135 | 260 | 376 | 580 | 1000 | | | | 25 | .4.0 | 12.0 | 16 | 4.7 | 89 | 110 | 150 | 300 | 410 | 650 | 1120 | | | | 30 | 4.2 | 13.4 | 17.5 | 52 | 96 | 120 | 170 | 325 | 450 | 720 | 1250 | | | | 40 | 5.0 | 15.5 | 20 | 60 | 110 | 140 | 185 | 375 | 520 | 830 | 1410 | | | | 50 | 5.6 | 17.3 | 22 | 66 | 125 | 158 | 215 | 420 | 580 | 910 | 1600 | | | | 60 | 6.2 | 19.9 | 24 | 73 | 135 | 175 | 240 | 460 | 650 | 1000 | 1720 | | | | 70 | 6.8 | 20 | 26 | 80 | 147 | 188 | 260 | 490 | 700 | 1100 | 1900 | | | | 80 | 7.2 | 22 | 28 | 85 | 158 | 210 | 280 | 525 | 750 | 1150 | 2000 | | | | 90 | 7.8 | 23 | 30 | 90 | 168 | 215 | 290 | 555 | 780 | 1250 | 2175 | | | | 100 | 8.0 | 24 | 32 | 95 | 175 | 220 | 300 | 595 | 820 | 1300 | 2220 | | | | 125 | 9.0 | 26 | 36 | 108 | 195 | 250 | 325 | 660 | 925 | 1450 | 2500 | | | - * Water flows are tabulated for pressure drops up to the maximum designed pressure drop of the valve. The maximum supply pressure should not exceed the published body rating. Certain self-actuated temperature regulators will not permit the full body rating pressure drop. Check Table III for limitations. - (a) The water flow through the valve at 1 PSI pressure drop is the "Flow Coefficient" (frequently abbreviated as C_v) of the valve. Reverse Acting Direct or Reverse Acting above 2"; Reverse Acting only below 21/2" TABLE V MAXIMUM WATER FLOW (GPM) Three-Way Valves, Style "WA" | W 1 C: Y | 1 | 2" | 3/ | 4" | 1 | ,, | 1-1, | /4" | 1-1/2" | | | | | |---------------------------------------|-------------------------------|---|--------------------------------------|--------------------------------------|------------------------------|-----------------------------|-------------------------------|------------------------------|---------------------------------|-------------------------------|--|--|--| | Valve Size, In. Direction Flow | A to B | A to C | A to B | AtoC | AtoB | A to C | AtoB | AtoC | AtoB | A to C | | | | | Pressure Drop
across Valve
PSI* | | Maximum Flow Through Ports Indicated with Water at 60° F. | | | | | | | | | | | | | 1(a)
2
4
6
8 | 4.3
6.1
8.6
10
12 | 3.2
4.5
6.4
7.8
9.0 | 7.8
11.0
15.5
19.0
22.0 | 5.6
7.8
11.0
13.5
15.5 | 11.1
16
22
27
32 | 8.9
13
18
22
25 | 23.5
33
36
57
65 | 18.1
26
38
44
51 | 31.7
44
63
78
90 | 25
35
50
61
71 | | | | | 10
15
20
25
30 | 14
17
19
22
24 | 10
12
14
16
17 | 24.5
30.0
35.0
38.0
42.5 | 17.5
21.5
25.0
28.0
30.0 | 36
43
50
56
61 | 28
34
40
44
49 | 74
90
100
110
122 | 57
70
80
90
100 | 100
120
140
160
175 | 79
97
110
125
135 | | | | | 40
50 | 27
30 | 20
23 | 50.0
55 | 35.0
38 | 70
78 | 56
63 | 140
160 | 112
130 | 200
220 | 160
180 | | | | | 60
70
80
100 | 33
36
38
42 | 25
27
29
31 | 61
65
70
77 | 43
46.5
50
55 | 85
93

 | 69
75
 | | | | | | | | ^{*} Water flows are tabulated for pressure drops up to the maximum designed pressure drop of the valve. The maximum supply pressure should not exceed the published body rating. Careful consideration must be given to the type of service and pressure differential between the ports in selecting self-actuated temperature regulators with 3-way valves. Check Table III for limitations. (a) The water flow through the valve at 1 PSI pressure drop is also the "Flow Coefficient" (frequently abbreviated as C_V) of the valve. ### OTHER LIQUIDS The flow of liquids other than water is affected by specific gravity and viscosity. With specific gravity from 0.95 to 1.05, and/or viscosity below 50 SSU, it is practical to use the water flow tables. For other conditions, use the Robertshaw "FLO-RULE" of contact our representative or the factory. TABLE VI MAXIMUM WATER FLOW (GPM) Three-Way Valves, Style "WD" | Valve Size, In. | 2" | | 2-1/2" | | 3" | | 4" | | 5" | | 6" | | | | |---------------------------------------|---|--|--|--|--|--|---------------------------------|---------------------------------|--|--------|------|------|--|--| | Direction of Flow | EtoB | E to C | E to B | E to C | EtoB | EtoC | EtoB | E to C | EtoB | E to C | EtoB | EtoC | | | | Pressure Drop
across Valve
PSI* | Maximum Flow Through Ports Indicated with Water at 60° F. | | | | | | | | | ,* * " | | | | | | 1 (a)
2
4
6
8 | 64
90
138
160
180 | 64
90
138
160
180 | 77
120
165
190
235 | 77
120
165
190
235 | 115
165
235
280
350 | 105
150
210
260
320 | 240
340
480
600
725 | 250
360
500
600
750 | Formaximumcapacity | | | | | | | 10
15
20
25
30
40 | 200
250
280
320
360
400 | 200
250
280
320
360
400 | 240
300
340
385
420
490 | 240
300
340
385
420
490 | 365
445
525
575
640
730 | 340
400
475
530
580
675 | 756
930
1090
1200 | 800
975
1100
1250 | For maximum capacity Size 5" and 6" valves, consult factory. | | | | | | ^{*} Water flows are tabulated for pressure drops up to the maximum designed pressure drop of the valve. The maximum supply pressure should not exceed the published body rating. Careful consideration must be given to the type of service and pressure differential between the ports in selecting self-actuated temperature regulators. Check Table III and the specification sheets for limitations. #### **OTHER LIQUIDS** The flow of liquids other than water is affected by specific gravity and viscosity. With specific gravity from 0.95 to 1.05, and/or viscosity below 50 SSU, it is practical to use the water flow tables. For other conditions, use the Robertshaw "FLO-RULE" or contact our representative or the factory. ⁽a) The water flow through the valve at 1 PSI pressure drop is also the "Flow Coefficient," frequently abbreviated as C_V) of the valve. ### U.S.A. & Canada Robertshaw Industrial Products 1602 Mustang Drive Maryville, Tennessee 37801 Phone: (865) 981-3100 Fax: (865) 981-3168 http://www.robertshawindustrial.com ### **Exports** Invensys Appliance Controls 1701 Byrd Avenue P.O. Box 26544 Richmond, Virginia 23261-6544 Phone: (804) 756-6500 Fax: (804) 756-6561 **invensys**_® Q-3313 (4/97) Printed in U.S.A.